Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/53311
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang Zixiao-
dc.coverage.spatialМинскen_US
dc.date.accessioned2023-10-19T12:14:52Z-
dc.date.available2023-10-19T12:14:52Z-
dc.date.issued2023-
dc.identifier.citationYang Zixiao. Deep learning framework for activity recognition based on smartphone accleration data, convolutional neural network and long short time memory : автореф. дисс. ... магистра технических наук : 1-45 80 01 / Yang Zixiao; науч. рук. I. Boriskevich. – Минск : БГУИР, 2023. – 8 с.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/53311-
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectавторефераты диссертацийen_US
dc.subjectтехнические наукиen_US
dc.subjectconfusion matrixen_US
dc.subjectaccelerometer sensoren_US
dc.titleDeep learning framework for activity recognition based on smartphone accleration data, convolutional neural network and long short time memoryen_US
dc.typeThesisen_US
Appears in Collections:1-45 80 01 Системы и сети инфокоммуникаций

Files in This Item:
File Description SizeFormat 
Yang_Zixiao_Deep.pdf193.71 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.