DC Field | Value | Language |
dc.contributor.author | Khaliava, I. I. | - |
dc.contributor.author | Khamets, A. L. | - |
dc.contributor.author | Safronov, I. V. | - |
dc.contributor.author | Filonov, A. B. | - |
dc.contributor.author | Takashi Suemasu | - |
dc.contributor.author | Migas, D. B. | - |
dc.coverage.spatial | Japan | en_US |
dc.date.accessioned | 2023-12-27T07:13:15Z | - |
dc.date.available | 2023-12-27T07:13:15Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Effect of morphology on the phonon thermal conductivity in Si/Ge superlattice nanowires / I. I. Khaliava [et al.] // Japanese Journal of Applied Physics. – 2023. – Vol. 62. – P. SD1013. | en_US |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/53936 | - |
dc.description.abstract | We used nonequilibrium molecular dynamics to investigate the role of morphology in the phonon thermal conductivity of 〈100〉, 〈110〉, 〈111〉 and 〈112〉-oriented Si/Ge superlattice nanowires at 300 K. Such nanowires with 〈112〉 growth direction were found to possess the lowest values of the thermal conductivity [1.6 W/(m·K) for a Si and Ge segment thickness of ∼3 nm] due to the lowest average group velocity and highly effective {113} facets and Si/Ge(112) interface for phonon-surface and phonon-interface scattering, respectively. Comparison with homogeneous and core/shell Si and Ge nanowires showed that the superlattice morphology is the most efficient to suppress the thermal conductivity. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Pure and Applied Physics | en_US |
dc.subject | публикации ученых | en_US |
dc.subject | Si/Ge nanowires | en_US |
dc.subject | phonon thermal conductivity | en_US |
dc.title | Effect of morphology on the phonon thermal conductivity in Si/Ge superlattice nanowires | en_US |
dc.type | Article | en_US |
dc.identifier.DOI | https://doi.org/10.35848/1347-4065/aca912 | - |
Appears in Collections: | Публикации в зарубежных изданиях
|