DC Field | Value | Language |
dc.contributor.author | Zhao Di | - |
dc.contributor.author | Tang Yi | - |
dc.contributor.author | Gourinovitch, A. B. | - |
dc.coverage.spatial | Минск | en_US |
dc.date.accessioned | 2024-01-22T11:14:42Z | - |
dc.date.available | 2024-01-22T11:14:42Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Zhao Di. Dilated convolution and spatial pyramid fusion in the image segmentation problem / Zhao Di, Tang Yi, A. B. Gourinovitch // Информационные технологии и системы 2023 (ИТС 2023) = Information Technologies and Systems 2023 (ITS 2023) : материалы Международной научной конференции, Минск, 22 ноября 2023 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2023. – С. 227–228. | en_US |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/54153 | - |
dc.description.abstract | Image segmentation is one of the important tasks in the computer vision, where the goal is to segment different
regions in an image into semantically meaningful parts. However, due to the presence of target and contextual
information at different scales in an image, traditional segmentation methods face the challenges of information
loss and lack of accuracy when dealing with images at different scales. To address this problem, this study proposes an innovative approach that combines dilated convolution and spatial pyramid pooling to improve the processing power and accuracy of segmentation models for images of different scales. | en_US |
dc.language.iso | ru | en_US |
dc.publisher | БГУИР | en_US |
dc.subject | материалы конференций | en_US |
dc.subject | image segmentation | en_US |
dc.subject | computer vision | en_US |
dc.subject | spatial pyramid | en_US |
dc.title | Dilated convolution and spatial pyramid fusion in the image segmentation problem | en_US |
dc.type | Article | en_US |
Appears in Collections: | ИТС 2023
|