Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54286
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLouis Wong-
dc.contributor.authorAhmed Salih-
dc.contributor.authorMingyao Song-
dc.contributor.authorJason Xu-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-02-16T07:47:40Z-
dc.date.available2024-02-16T07:47:40Z-
dc.date.issued2023-
dc.identifier.citationMultimodal Deep Regression on TikTok Content Success / Louis Wong [et al.] // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 35–41.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/54286-
dc.description.abstractContent creators grapple with the challenge of predicting if their investments will lead to increased viewership and audience growth on social media platforms. By employing advanced techniques in video encoding and natural language processing, we construct a powerful multimodal ensemble model for accurately predicting video success. Our preliminary results demonstrate the model’s effectiveness in predicting video virality.en_US
dc.language.isoenen_US
dc.publisherBSUen_US
dc.subjectматериалы конференцийen_US
dc.subjectviralityen_US
dc.subjectmultimodalen_US
dc.subjectpredictingen_US
dc.titleMultimodal Deep Regression on TikTok Content Successen_US
dc.typeArticleen_US
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Louis_Wong_Multimodal.pdf486.29 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.