Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54317
Title: Hidden Object Masking using Deep Learning
Authors: Qing Bu
Wei Wan
Leonov, I.
Keywords: материалы конференций;image inpainting;WGAN;generative adversarial network;WGAIN;image imputation
Issue Date: 2023
Publisher: BSU
Citation: Qing Bu. Hidden Object Masking using Deep Learning / Qing Bu, Wei Wan, I. Leonov // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 320–323.
Abstract: Image inpainting, the process of filling in missing or damaged regions within images, has witnessed a significant evolution in recent years, driven primarily by deep learning methodologies. This paper provides an overview of modern architectures used for image inpainting, and addresses how they can be applied to protect sensitive information.
URI: https://libeldoc.bsuir.by/handle/123456789/54317
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Qing_Bu_Hidden.pdf347.45 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.