Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54369
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarysheva, I.-
dc.contributor.authorVasilevsky, K.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-02-26T11:33:46Z-
dc.date.available2024-02-26T11:33:46Z-
dc.date.issued2023-
dc.identifier.citationBarysheva, I. Time series forecasting using gradient boosting algorithms / I. Barysheva, K. Vasilevsky // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 176–179.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/54369-
dc.description.abstractThis study investigates the efficiency of gradient boosting algorithms, particularly XGBoost, in time series forecasting. We optimize the parameters using RandomizedSearchCV and apply the model to daily stock prices of the Ethereum cryptocurrency. Additionally, we compare the prediction performance of XGBoost with two other models, LightGBM and CatBoost. Our findings reveal that the LightGBM model outperforms both CatBoost and XGBoost in terms of accuracy for time series prediction.en_US
dc.language.isoenen_US
dc.publisherBSUen_US
dc.subjectматериалы конференцийen_US
dc.subjectgradient boostingen_US
dc.subjectfinancial time series forecastingen_US
dc.subjectXGBoosten_US
dc.titleTime series forecasting using gradient boosting algorithmsen_US
dc.typeArticleen_US
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Barysheva_Time.pdf336.05 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.