Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54403
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDzenhaliou, D. I.-
dc.contributor.authorSarvanov, V. I.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-02-27T09:37:18Z-
dc.date.available2024-02-27T09:37:18Z-
dc.date.issued2023-
dc.identifier.citationDzenhaliou, D. I. Improving efficiency of VF3 and VF3-light algorithms for sparse graphs / D. I. Dzenhaliou, V. I. Sarvanov // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 300–304.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/54403-
dc.description.abstractResearchers have made notable progress in improv- ing the way we fi nd isomorphic subgraphs in labeled or unlabeled graphs by focusing on effi ciency. One group of algorithms, known as the VF series, has consistently shown its effectiveness, especially when dealing with large sparse graphs. In this paper, we introduce a new method that leverages machine learning capabilities, aiming to improve the performance of VF3 and VF3- light algorithms in solving the specifi ed problem. Also, we propose a new parallelization scheme for VF3 and VF3-light algorithms.en_US
dc.language.isoenen_US
dc.publisherBSUen_US
dc.subjectматериалы конференцийen_US
dc.subjectgraphen_US
dc.subjectalgorithmen_US
dc.subjectisomorphismen_US
dc.titleImproving efficiency of VF3 and VF3-light algorithms for sparse graphsen_US
dc.typeArticleen_US
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Dzenhaliou_Improving.pdf180.82 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.