Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54455
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKrasnoproshin, D.-
dc.contributor.authorVashkevich, M.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-03-01T07:52:36Z-
dc.date.available2024-03-01T07:52:36Z-
dc.date.issued2023-
dc.identifier.citationKrasnoproshin, D. Speech emotion recognition using SVM classifier with suprasegmental MFCC features / D. Krasnoproshin, M. Vashkevich // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 118–121.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/54455-
dc.description.abstractThis study explores speech emotion recognition (SER) using mel-frequency cepstral coefficients (MFCCs) and Support Vector Machines (SVMs) classifier on the RAVDESS dataset. We proposed a model which uses 80-component suprasegmental MFCC feature vector as an input downstream by SVM classifier. To evaluate the quality of the model, unweighted average recall (UAR) was used. We evaluate different kernel functions for SVM (such as linear, polynomial and radial basis)and different frame size for MFCC extraction (from 20 to 170 ms). Experimental results demonstrate promising accuracy(UAR = 48%), showcasing the potential of this approach for applications like voice assistants, virtual agents, and mental health diagnostics.en_US
dc.language.isoenen_US
dc.publisherBSUen_US
dc.subjectматериалы конференцийen_US
dc.subjectemotion recognitionen_US
dc.subjectspeech signalen_US
dc.subjectsupport vector machineen_US
dc.titleSpeech emotion recognition using SVM classifier with suprasegmental MFCC featuresen_US
dc.typeArticleen_US
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Krasnoproshin_Speech.pdf452.86 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.