Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54456
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKrasnoproshin, V.-
dc.contributor.authorRodchenko, V.-
dc.contributor.authorKarkanitsa, A.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-03-01T07:55:27Z-
dc.date.available2024-03-01T07:55:27Z-
dc.date.issued2023-
dc.identifier.citationKrasnoproshin, V. Synthesis of Automatic Recognition Systems Based on Properties Commonality / V. Krasnoproshin, V. Rodchenko, A. Karkanitsa // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 97–100.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/54456-
dc.description.abstractThe paper explores an actual applied problem related to the synthesis of automatic recognition systems. The conceptual base of synthesis is determined by the methods of describing and separating classes. Three basic principles are known: enumeration of class members, commonality of properties, and clustering. The report proposes an original method for implementing the principle of commonality of properties, based on the search for combinations of features that provide classes distinguishing. The efficiency of the approach is confirmed by the results of a numerical experiment.en_US
dc.language.isoenen_US
dc.publisherBSUen_US
dc.subjectматериалы конференцийen_US
dc.subjectpattern recognition systemen_US
dc.subjectdata miningen_US
dc.subjectinstance-based learningen_US
dc.titleSynthesis of Automatic Recognition Systems Based on Properties Commonalityen_US
dc.typeArticleen_US
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Krasnoproshin_Synthesis.pdf274.01 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.