Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/56938
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao Di-
dc.contributor.authorTang Yi-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-08-16T06:49:22Z-
dc.date.available2024-08-16T06:49:22Z-
dc.date.issued2024-
dc.identifier.citationZhao Di. Generative adversarial network for medical image segmentation / Zhao Di, Tang Yi // Информационные технологии и управление : материалы 60-ой научной конференции аспирантов, магистрантов и студентов, Минск, 22–26 апреля 2024 года / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2024. – С. 44.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/56938-
dc.description.abstractIn this paper, a U-Net medical image segmentation method based on generative adversarial networks is proposed. This method is used to solve the problem of performance degradation of modeling algorithms due to insufficient training samples in medical image segmentation.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectsegmentation methoden_US
dc.subjectmedical imageen_US
dc.subjectmedical image segmentationen_US
dc.titleGenerative adversarial network for medical image segmentationen_US
dc.typeArticleen_US
Appears in Collections:Информационные технологии и управление : материалы 60-й научной конференции аспирантов, магистрантов и студентов (2024)

Files in This Item:
File Description SizeFormat 
Zhao_Di_Generative.pdf381.14 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.