Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/57215
Full metadata record
DC FieldValueLanguage
dc.contributor.authorВишняков, В. А.-
dc.contributor.authorСя, И. В.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-09-03T06:28:38Z-
dc.date.available2024-09-03T06:28:38Z-
dc.date.issued2024-
dc.identifier.citationВишняков, В. А. Система IOT для диагностики болезни Паркинсона с использованием нейронных сетей и OSTIS = IOT system architecture for the diagnosis of Parkinson's disease using neural networks and OSTIS / В. А. Вишняков, И. В. Ся // Cистемный анализ и прикладная информатика. – 2024. – № 2. – С. 52–60.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/57215-
dc.description.abstractЦель данной работы состоит в том, чтобы разработать систему ИТ-диагностики болезни Паркинсона (БП) с удаленным доступом на базе сети Интернета вещей (IoT). Авторы ранее разработали метод комплексного распознавания болезни Паркинсона с использованием машинного обучения, маркерах анализа голоса и изменениях в движениях пациента. Два общедоступных набора данных (sound, action) были выбраны в качестве экспериментальных. В статье приведена его реализация на базе сети IoT. Разработка сети выполнена с использованием OSTIS (Open Semantic Technology for Intelligent Systems). В сети IoT смартфон является точкой ввода и предварительной обработки двух наборов данных, включая извлечение признаков из аудиозаписи голоса пациента и его двигательной активности. Передача данных осуществляется через локальный сервер Flask, действующий как канал для пересылки функциональных данных на сервер OSTIS. Сервер OSTIS обрабатывает данные, полученные с локального сервера Flask, и использует агента прогнозирования нейронной сети для распознавания БП. Этот агент загружает признаки, извлеченные из голоса и движения пациента, и делает прогнозы на основе обученной нейронной сети, связывая эти прогнозы со знаниями в системе OSTIS, и сохраняет их в базе данных. Результатом исследования является архитектура и алгоритмы работы сети IoT. Рабочий процесс всей системы включает в сбор и предварительную обработку данных устройствами Интернета вещей (смартфоном, датчиками движения) последующую передачу данных на локальный сервер Flask, дальнейшую пересылку на сервер OSTIS, обработку модели нейронной сети агентом нейросетевого предсказателя и, в конечном счете, связывание обработанных результатов с графом знаний и сохранение их в системе. Система удаленной ИТ-диагностики БП обеспечивает обработку данных пациентов в режиме реального времени, распознавание признаков заболевания в сети Интернета вещей, поддержки расширенного анализа и принятия решений по дальнейшему лечению.en_US
dc.language.isoruen_US
dc.publisherБелорусский национальный технический университетen_US
dc.subjectпубликации ученыхen_US
dc.subjectинтернет вещейen_US
dc.subjectболезнь Паркинсонаen_US
dc.subjectмашинное обучениеen_US
dc.subjectнейронные сетиen_US
dc.titleСистема IOT для диагностики болезни Паркинсона с использованием нейронных сетей и OSTISen_US
dc.title.alternativeIOT system architecture for the diagnosis of Parkinson's disease using neural networks and OSTISen_US
dc.typeArticleen_US
dc.identifier.DOI10.21122/2309-4923-2024-2-52-60-
local.description.annotationThe purpose of this work is to develop an IT diagnostic system for Parkinson's disease (PD) with remote access based on the Internet of Things (IoT) network. Methods. The authors have developed a method for complex recognition of Parkinson's disease using machine learning, based on markers of voice analysis and changes in patient movements on known datasets. In the architecture of the Internet of Things network, a smartphone is the point of initial data collection and preprocessing, including extracting features from an audio recording of the patient's voice and his motor activity. Data is transmitted via a local Flask server, which acts as a channel for sending functional data to the Open Semantic Technology for Intelligent Systems (OSTIS) server. The OSTIS server processes the data received from the local Flask server and uses a neural network prediction agent to recognize BP. This agent downloads features and makes predictions based on a trained neural network, linking these predictions with knowledge in the OSTIS system, and stores them in a database.The result of the study is the architecture and algorithms of the IoT network. The workflow of the entire system includes data collection and preprocessing by the Internet of Things device, subsequent data transfer to the local Flask server, further forwarding to the OSTIS server, processing of the neural network model by a neural network predictor agent and, ultimately, linking the processed results to the knowledge graph and storing them in the system. The BP remote IT diagnostics system provides real-time processing of patient data, recognition of disease signs on the Internet of Things, support for advanced analysis and decision-making for further treatment.en_US
Appears in Collections:Публикации в изданиях Республики Беларусь

Files in This Item:
File Description SizeFormat 
Vishnyakov_Sistema_IOT.pdf563.85 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.