Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/58675
Title: А hybrid agent-centric and scene-centric approach for multi-agent trajectory prediction
Authors: Tang Yi
German, O. V.
Keywords: материалы конференций;automated systems;multi-agent systems;autonomous driving;machine learning
Issue Date: 2024
Publisher: БГУИР
Citation: Tang Yi. А hybrid agent-centric and scene-centric approach for multi-agent trajectory prediction / Tang Yi, O. V. German // Информационные технологии и системы 2024 (ИТС 2024) = Information Technologies and Systems 2024 (ITS 2024) : материалы международной научной конференции, Минск, 20 ноября 2024 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2024. – С. 200–201.
Abstract: Accurately predicting the future trajectories of agents in autonomous driving is crucial for safe navigation and decision-making. Traditional trajectory prediction models have limitations when dealing with complex multi-agent interactions. In this paper, we propose a hybrid approach that leverages the strengths of both agent-centric and scene-centric models by using agent-centric normalization for dynamic agents and a scene-centric framework for static map elements.
URI: https://libeldoc.bsuir.by/handle/123456789/58675
Appears in Collections:ИТС 2024

Files in This Item:
File Description SizeFormat 
Tang_Yi_A_hybrid.pdf398.94 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.