Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/58693
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang Hengrui-
dc.contributor.authorGerman, Yu. О.-
dc.contributor.authorHe Runhai-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-01-13T06:27:15Z-
dc.date.available2025-01-13T06:27:15Z-
dc.date.issued2024-
dc.identifier.citationZhang Hengrui. Principles and applications of fuzzy clustering algorithms / Zhang Hengrui, Yu. О. German, He Runhai // Информационные технологии и системы 2024 (ИТС 2024) = Information Technologies and Systems 2024 (ITS 2024) : материалы международной научной конференции, Минск, 20 ноября 2024 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2024. – С. 196–197.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/58693-
dc.description.abstractThis paper takes the fuzzy C-mean (FCM) clustering algorithm as an example, introduces the basic principles and applications of fuzzy clustering, and compares it with the K-mean algorithm to analyze the similarities and differences between the two. Fuzzy clustering allows data points to belong to multiple clusters at the same time, is suitable for dealing with fuzzy and overlapping data, and has a wide range of practical applications.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectinformation technologyen_US
dc.subjectclusteringen_US
dc.subjectFuzzy C-meansen_US
dc.titlePrinciples and applications of fuzzy clustering algorithmsen_US
dc.typeArticleen_US
Appears in Collections:ИТС 2024

Files in This Item:
File Description SizeFormat 
Zhang_Hengrui_Principles.pdf547.64 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.