Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/59209
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBohush, R.-
dc.contributor.authorAdamovskiy, Y.-
dc.contributor.authorNaumovish, N.-
dc.coverage.spatialSingaporeen_US
dc.date.accessioned2025-02-26T07:16:30Z-
dc.date.available2025-02-26T07:16:30Z-
dc.date.issued2024-
dc.identifier.citationBohush, R. Spectrum Hole Prediction in LTE-Based Cognitive Radio System Using Kolmogorov-Arnold Network / R. Bohush, Y. Adamovskiy, N. Naumovish // Applied Mathematics, Modeling and Computer Simulation : proceedings of the 4th International Conference (AMMCS 2024), Wuhan, China, 17–18 August 2024 / ed.: Chi-Hua Chen [et al.]. – Wuhan, 2024. – P. 333–340.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/59209-
dc.description.abstractThis paper examines the problem of channel resource occupancy prediction using Radio Environment Maps (REM) based on Long Term Evolution (LTE) for a cognitive communication system. REM is a spatiotemporal database in the form of a resource grid with passing traffic in cells. For prediction, the Kolmogorov-Arnold network (KAN) architecture is used. A model structure has been developed that collects data, trains and tests KAN. The predictive model control algorithm is implemented in Python. MatLab was used to prepare input data and implement the LTE simulation model. Experiments are carried out and results of free channel resource prediction based on KAN and long-term memory are presented.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectпубликации ученыхen_US
dc.subjectсellular communication systemen_US
dc.subjectKANen_US
dc.subjectartificial neural networksen_US
dc.titleSpectrum Hole Prediction in LTE-Based Cognitive Radio System Using Kolmogorov-Arnold Networken_US
dc.typeArticleen_US
dc.identifier.DOI10.3233/ATDE240776-
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Naumovich_Spectrum.pdf617.18 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.