Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/59572
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Х.-
dc.contributor.authorPrudnik, А.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-04-18T06:54:35Z-
dc.date.available2025-04-18T06:54:35Z-
dc.date.issued2025-
dc.identifier.citationWang, Х. Architectural framework of a prototype for anomaly detection in network traffic using machine learning / X. Wang, A. Prudnik // Технические средства защиты информации : материалы ХXIII Международной научно-технической конференции, Минск, 08 апреля 2025 года / Белорусский государственный университет информатики и радиоэлектроники [и др.] ; редкол.: О. В. Бойправ [и др.]. – Минск, 2025. – С. 40–43.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/59572-
dc.description.abstractThis paper presents a prototype application for detecting network traffic anomalies by integrating visual analytics and unsupervised machine learning. Built using a Flask-based three-tier architecture, the system employs the Isolation Forest algorithm for anomaly detection and provides interactive web-based visualizations to enhance human interpretation of complex traffic patterns. Key features include temporal traffic flow visualization, protocol distribution analysis, and anomaly severity classification. The prototype enables network administrators to identify sophisticated intrusions through real-time metrics and supports informed decision making for threat mitigation.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectmachine learningen_US
dc.subjectnetwork trafficen_US
dc.subjectnetwork anomaliesen_US
dc.titleArchitectural framework of a prototype for anomaly detection in network traffic using machine learningen_US
dc.typeArticleen_US
Appears in Collections:ТСЗИ 2025

Files in This Item:
File Description SizeFormat 
Wang_Architectural.pdf422.76 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.