Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/59578
Title: Web application vulnerability testing framework
Authors: Kondo, K. N.
Nasonova, N.
Keywords: материалы конференций;защита информации;SAST;DAST;IAST;machine learning
Issue Date: 2025
Publisher: БГУИР
Citation: Kondo, K. N. Web application vulnerability testing framework / K. N. Kondo, N. Nasonova // Технические средства защиты информации : материалы ХXIII Международной научно-технической конференции, Минск, 08 апреля 2025 года / Белорусский государственный университет информатики и радиоэлектроники [и др.] ; редкол.: О. В. Бойправ [и др.]. – Минск, 2025. – С. 20–22.
Abstract: The increasing prevalence of cyberattacks targeting web applications necessitates advanced vulnerability detection techniques. Traditional methods such as Static Application Security Testing (SAST) and Dynamic Application Security Testing (DAST) face challenges including high false positives, limited coverage of modem architectures (e.g., serverless, microservices), and inefficiency in identifying zero-day vulnerabilities. This paper proposes a hybrid vulnerability testing framework that combines SAST, DAST, and Machine Learning (ML) to enhance detection accuracy and adaptability. The technique integrates static code analysis for identifying insecure coding patterns, dynamic runtime monitoring to detect exploitation attempts, and an ML classifier trained on anomaly datasets to reduce false alarms.
URI: https://libeldoc.bsuir.by/handle/123456789/59578
Appears in Collections:ТСЗИ 2025

Files in This Item:
File Description SizeFormat 
Kondo_ Web_application.pdf155.5 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.