Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/9682
Full metadata record
DC FieldValueLanguage
dc.contributor.authorСамаль, Д. И.-
dc.contributor.authorПрытков, В. А.-
dc.contributor.authorТрубчик, А. И.-
dc.date.accessioned2016-10-25T10:50:26Z-
dc.date.accessioned2017-07-18T11:52:25Z-
dc.date.available2016-10-25T10:50:26Z-
dc.date.available2017-07-18T11:52:25Z-
dc.date.issued2016-
dc.identifier.citationТрубчик, А. И. Прогнозирование событий с помощью ленты Twitter / А. И. Трубчик, Д. И. Самаль, В. А. Прытков // BIG DATA and Advanced Analytics. Использование BIG DATA для оптимизации бизнеса и информационных технологий : сборник материалов II международной научно-практической конференции, Минск, 15-17 июня 2016 г. / редкол. : М. П. Батура [и др.]. – Минск : БГУИР, 2016. – С. 325-331.ru_RU
dc.identifier.isbn978-985-543-237-2-
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/9682-
dc.description.abstractThe paper explores the possibility of forecasting based on the intelligent analysis of a feed of the Twitter social network. The object of this analysis is the Bitcoin crypto currency market. The theoretical basis for this forecasting approach is the efficient market hypothesis, which states that new information can be used for gaining economic advantage. The source of this information is the sentiment analysis of Twitter messages. The work proposes a new algorithm of determining the emotions of Twitter messages with three possible grade levels: negative, neutral and positive. Thanks to comprehensive correlation analysis and forecasting experiments, it was determined that there is a relation between the analyzed source data, and the prediction accuracy of Bitcoin market movements reached 63,27%.ru_RU
dc.language.isoruru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.titleПрогнозирование событий с помощью ленты Twitterru_RU
dc.typeArticleru_RU
Appears in Collections:BIG DATA and Advanced Analytics. Использование BIG DATA для оптимизации бизнеса и информационных технологий (2016)

Files in This Item:
File Description SizeFormat 
Samal_Prognozirovaniye.PDF617.25 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.