Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/33046
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMozhey, N. P.-
dc.date.accessioned2018-09-28T06:58:24Z-
dc.date.available2018-09-28T06:58:24Z-
dc.date.issued2018-
dc.identifier.citationMozhey, N. P. Non-reductive homogeneous spaces, admitting affine connections / N. P. Mozhey // Graphs and Groups, Representations and Relations, 2018 : abstracts of the International Conference and PhD-Master Summer School on Graphs and Groups, Representations and Relations / Sobolev Institute of Mathematics. - Novosibirsk, 2018. – P. 71 - 72.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/33046-
dc.description.abstractThe purpose of the work is a study of three-dimensional non-reductive homogeneous spaces, admitting invariant affine connections, description of the affine connections together with their curvature and torsion tensors, holonomy algebras. We describe all three-dimensional non-reductive homogeneous spaces, allowing invariant affine connections (the local classification of such spaces is equivalent to the description of the effective pairs of Lie algebras) and all invariant affine connections on the spaces together with their curvature and torsion tensors, holonomy algebras. Studies are based on the use of properties of the Lie algebras, Lie groups and homogeneous spaces and they mainly have local character.ru_RU
dc.language.isoenru_RU
dc.publisherSobolev Institute of Mathematicsru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectaffine connectionru_RU
dc.subjecthomogeneous spaceru_RU
dc.subjectholonomy algebraru_RU
dc.subjectreductive spaceru_RU
dc.subjectcurvature tensorru_RU
dc.subjecttorsion tensorru_RU
dc.titleNon-reductive homogeneous spaces, admitting affine connectionsru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Mozhey_Non.pdf266 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.