Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/33102
Full metadata record
DC FieldValueLanguage
dc.contributor.authorМожей, Н. П.-
dc.contributor.authorMozhey, N. P.-
dc.date.accessioned2018-10-02T13:43:03Z-
dc.date.available2018-10-02T13:43:03Z-
dc.date.issued2018-
dc.identifier.citationМожей, Н. П. Нередуктивные однородные пространства и нормальные связности на них / Н. П. Можей // Известия Гомельского государственного университета им. Ф. Скорины. - 2018. - № 3 (108). - С. 137 - 144.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/33102-
dc.description.abstractПриведено локальное описание трехмерных нередуктивных однородных пространств с неразрешимой группой преобразований, допускающих нормальную связность. Локальное изучение однородных пространств равносильно исследованию пар, состоящих из алгебры Ли и ее подалгебры. Описаны в явном виде все инвариантные аффинные связности на найденных однородных пространствах, а также тензоры кривизны и кручения указанных связностей. Исследованы алгебры голономии и определено, когда инвариантная связность нормальна.ru_RU
dc.language.isoruru_RU
dc.publisherГомельский государственный университет им. Ф. Скориныru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectнормальная связностьru_RU
dc.subjectоднородное пространствоru_RU
dc.subjectгруппа преобразованийru_RU
dc.subjectалгебра Лиru_RU
dc.subjectредуктивное пространствоru_RU
dc.subjectnormal connectionru_RU
dc.subjecthomogeneous spaceru_RU
dc.subjecttransformation groupru_RU
dc.subjectLie algebraru_RU
dc.subjectreductive spaceru_RU
dc.titleНередуктивные однородные пространства и нормальные связности на нихru_RU
dc.typeСтатьяru_RU
local.description.annotationA local description of three-dimensional nonreducible homogeneous spaces with an unsolvable group of transformations admitting a normal connection is given. A local study of homogeneous spaces is equivalent to the investigation of pairs consisting of Lie algebra and its subalgebra. All explicit invariant affine connections on the homogeneous spaces found are explicitly described, as well as the curvature and torsion tensors of the indicated connections. The holonomy algebras are studied and determined when the invariant connection is normal.-
Appears in Collections:Публикации в изданиях Республики Беларусь

Files in This Item:
File Description SizeFormat 
Mozhey_Nereduktivnyye.PDF325.65 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.