Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45634
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMozhey, N. P.-
dc.date.accessioned2021-10-18T13:41:30Z-
dc.date.available2021-10-18T13:41:30Z-
dc.date.issued2021-
dc.identifier.citationMozhey, N. P. Torsion free equiaffine connections on three-dimensional homogeneous spaces / N. P. Mozhey // The Art of Discrete and Applied Mathematics. – 2021. – Vol. 4, № 2. – P. 1–10. – DOI : https://doi.org/10.26493/2590-9770.1361.dd9.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/45634-
dc.description.abstractThe aim of this paper is to describe equiaffine connections on three-dimensional homo- geneous spaces. The affine connection is equiaffine if it admits a parallel volume form. Only the case of spaces not admitting connections with nonzero torsion is considered. For such homogeneous spaces, it is determined under what conditions the connection is equiaffine (locally equiaffine). In addition, equiaffine (locally equiaffine) connections and Ricci tensors are written out in explicit form. In this work we use the algebraic approach for description of connections, methods of the theory of Lie groups, Lie algebras and ho- mogeneous spaces.ru_RU
dc.language.isoenru_RU
dc.publisherUniversity of Primorskaru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectequiaffine connectionru_RU
dc.subjecthomogeneous spaceru_RU
dc.subjecttransformation groupru_RU
dc.subjectLie algebraru_RU
dc.subjecttorsion tensorru_RU
dc.subjectRicci tensorru_RU
dc.titleTorsion free equiaffine connections on three-dimensional homogeneous spacesru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Mozhey_Torsion.pdf299.92 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.