Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45785
Title: Eigen Transformations of Symmetric Matrices in Information Processing Problems
Authors: Demko, V.
Zaitseva, V.
Keywords: материалы конференций;conference proceedings;symmetric matrix;eigenvalues;rotation operators
Issue Date: 2021
Publisher: UIIP NASB
Citation: Demko, V. Eigen Transformations of Symmetric Matrices in Information Processing Problems / Demko V., Zaitseva V. // Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2021. – P. 221–222.
Abstract: The mathematical justification of the algorithm for synthesis of proper transformation and the finding the eigenvalue of a symmetric matrix of dimension based on orthogonal rotation operators is given. Analytical relations for calculating the eigenvalues of symmetric matrix is optained. It is shown that the proper transformation has factorized structure in the form of a product of rotation operators. Each operator is a direct sum of elementary rotation matrices.
URI: https://libeldoc.bsuir.by/handle/123456789/45785
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021)

Files in This Item:
File Description SizeFormat 
Demko_Eigen.pdf912.98 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.