Please use this identifier to cite or link to this item:
https://libeldoc.bsuir.by/handle/123456789/45838
Title: | Bayesian multidimensional-matrix polynomial empirical regression |
Authors: | Mukha, V. S. |
Keywords: | публикации ученых;regression function;parameter estimation;maximum likelihood estimation;Bayesian estimation;multidimensional matrices |
Issue Date: | 2020 |
Publisher: | Polska Akademia Nauk |
Citation: | Mukha, V. S. Bayesian multidimensional-matrix polynomial empirical regression / Mukha V. S. // Control and Cybernetics. – 2020. – Vol. 49, № 4. – P. 291–315. |
Abstract: | The problem of parameter estimation for the polynomial in the input variables regression function is formulated and solved. The input and output variables of the regression function are multidimensional matrices. The parameters of the regression function are assumed to be random independent multidimensional matrices with Gaussian distribution and known mean value and variance matrices. The solution to this problem is a multidimensional-matrix system of the linear algebraic equations in multidimensional-matrix unknown – regression function parameters. We consider the particular cases of constant, affine and quadratic regression function, for which we have obtained formulas for parameter calculation. Computer simulation of the quadratic regression function is performed for the two-dimensional matrix input and output variables. |
URI: | https://libeldoc.bsuir.by/handle/123456789/45838 |
Appears in Collections: | Публикации в зарубежных изданиях
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.