Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/48532
Title: Machine learning algorithms in pair trading
Authors: Sviridenko, E. V.
Filipchenkov, V. D.
Zuyonok, R. V.
Keywords: материалы конференций;pairs trading;machine learning;statistical arbitrage;hiearchical agglomerative clustering;financial modeling
Issue Date: 2022
Publisher: БГУИР
Citation: Sviridenko, E. V. Machine learning algorithms in pair trading / Sviridenko E. V., Filipchenkov V. D., Zuyonok R. V. // Проблемы экономики и информационных технологий : сборник тезисов и статей докладов 58-ой научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 18–22 апреля 2022 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2022. – С. 73–79.
Abstract: Pairs trading is an approach of identification and construction of mean-reverting portfolio consisting of two or more assets. We have reviewed existing literature related to the usage of machine learning algorithms in statistical arbitrage trading strategy. Additionaly, we backtested trading-pairs, that were formed with clustering and dimension reduction algorithms, using 10 years (2012–2022) of S&P stock index time-series daily market data.
URI: https://libeldoc.bsuir.by/handle/123456789/48532
Appears in Collections:Проблемы экономики и информационных технологий : материалы 58-й научной конференции аспирантов, магистрантов и студентов (2022)

Files in This Item:
File Description SizeFormat 
Sviridenko_Mashine.pdf1.06 MBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.