Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54286
Title: Multimodal Deep Regression on TikTok Content Success
Authors: Louis Wong
Ahmed Salih
Mingyao Song
Jason Xu
Keywords: материалы конференций;virality;multimodal;predicting
Issue Date: 2023
Publisher: BSU
Citation: Multimodal Deep Regression on TikTok Content Success / Louis Wong [et al.] // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 35–41.
Abstract: Content creators grapple with the challenge of predicting if their investments will lead to increased viewership and audience growth on social media platforms. By employing advanced techniques in video encoding and natural language processing, we construct a powerful multimodal ensemble model for accurately predicting video success. Our preliminary results demonstrate the model’s effectiveness in predicting video virality.
URI: https://libeldoc.bsuir.by/handle/123456789/54286
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Louis_Wong_Multimodal.pdf486.29 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.