Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/58628
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao YuHang-
dc.contributor.authorGuo Hanasi-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-01-09T12:52:49Z-
dc.date.available2025-01-09T12:52:49Z-
dc.date.issued2024-
dc.identifier.citationGao YuHang. Feature-enhanced small-target detection / Gao YuHang, Guo Hanasi // Информационные технологии и системы 2024 (ИТС 2024) = Information Technologies and Systems 2024 (ITS 2024) : материалы международной научной конференции, Минск, 20 ноября 2024 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол. : Л. Ю. Шилин [и др.]. – Минск, 2024. – С. 75–76.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/58628-
dc.description.abstractDetecting small targets from images is still a challenging problem in computer vision due to the limited size, few appearance and geometric cues, and the lack of large-scale small target datasets. To address this problem, an adaptive feature-enhanced target detection network (YOLO-FENet) is proposed to improve the detection accuracy of small targets. Firstly, an improved adaptive two-way feature fusion module is designed by introducing a feature fusion factor to make full use of the feature maps of various scales to improve the feature expression ability of the network; secondly, a spatial attention generation module is proposed by combining the characteristics of the network, which improves the feature localization ability of the network by learning the positional information of the region of interest in the image. The experimental results on the UAVDT dataset show that the average precision (AP) of the proposed YOLO-FENet is 6.3 percentage points higher than that of the pre-improvement YOLOv5, and it is also better than other target detection networks.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectcomputer visionen_US
dc.subjecttarget detection networken_US
dc.subjectsmall-target detection-
dc.titleFeature-enhanced small-target detectionen_US
dc.typeArticleen_US
Appears in Collections:ИТС 2024

Files in This Item:
File Description SizeFormat 
Gao_YuHang_Feature_Enhanced.pdf914.06 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.