Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/58628
Title: Feature-enhanced small-target detection
Authors: Gao YuHang
Guo Hanasi
Keywords: материалы конференций;computer vision;target detection network;small-target detection
Issue Date: 2024
Publisher: БГУИР
Citation: Gao YuHang. Feature-enhanced small-target detection / Gao YuHang, Guo Hanasi // Информационные технологии и системы 2024 (ИТС 2024) = Information Technologies and Systems 2024 (ITS 2024) : материалы международной научной конференции, Минск, 20 ноября 2024 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол. : Л. Ю. Шилин [и др.]. – Минск, 2024. – С. 75–76.
Abstract: Detecting small targets from images is still a challenging problem in computer vision due to the limited size, few appearance and geometric cues, and the lack of large-scale small target datasets. To address this problem, an adaptive feature-enhanced target detection network (YOLO-FENet) is proposed to improve the detection accuracy of small targets. Firstly, an improved adaptive two-way feature fusion module is designed by introducing a feature fusion factor to make full use of the feature maps of various scales to improve the feature expression ability of the network; secondly, a spatial attention generation module is proposed by combining the characteristics of the network, which improves the feature localization ability of the network by learning the positional information of the region of interest in the image. The experimental results on the UAVDT dataset show that the average precision (AP) of the proposed YOLO-FENet is 6.3 percentage points higher than that of the pre-improvement YOLOv5, and it is also better than other target detection networks.
URI: https://libeldoc.bsuir.by/handle/123456789/58628
Appears in Collections:ИТС 2024

Files in This Item:
File Description SizeFormat 
Gao_YuHang_Feature_Enhanced.pdf914.06 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.