Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/59574
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhajynava, N.-
dc.contributor.authorMutero, Z.-
dc.contributor.authorAdam, A.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-04-18T08:52:34Z-
dc.date.available2025-04-18T08:52:34Z-
dc.date.issued2025-
dc.identifier.citationKhajynava, N. Adaptation of adversarial machine learning for training agents to counter data attacks / N. Khajynava, Z. Mutero, A. Adam // Технические средства защиты информации : материалы ХXIII Международной научно-технической конференции, Минск, 08 апреля 2025 года / Белорусский государственный университет информатики и радиоэлектроники [и др.] ; редкол.: О. В. Бойправ [и др.]. – Минск, 2025. – С. 385–387.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/59574-
dc.description.abstractAdversarial Machine Learning (AML) has emerged as a critical field of study, focusing on enhancing the robustness of machine learning models against data attacks. This article explores the adaptation of AML techniques to train intelligent agents capable of countering various attack types, including data poisoning and evasion. We discuss the theoretical foundations of AML, prevalent attack vectors, and methodologies for agent training. Our findings demonstrate that integrating adversarial training with reinforcement learning significantly improves model resilience, ensuring the security of machine learning applications. The proposed approach is validated through case studies in cybersecurity, autonomous systems, and finance. Experiments show that AML- trained agents achieve up to 92 % attack detection accuracy, reducing risks in autonomous systems by 40 %.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectзащита информацииen_US
dc.subjectAMLen_US
dc.subjectadversarial example generationen_US
dc.subjectrobust model trainingen_US
dc.subjectdata poisoning attacksen_US
dc.subjectevasion resistanceen_US
dc.subjectAl securityen_US
dc.subjectreinforcement learning defenseen_US
dc.subjectadversarial robustnessen_US
dc.subjectmachine learningen_US
dc.subjectmulti-agent systemsen_US
dc.titleAdaptation of adversarial machine learning for training agents to counter data attacksen_US
dc.typeArticleen_US
Appears in Collections:ТСЗИ 2025

Files in This Item:
File Description SizeFormat 
Khajynava_Adaptation.pdf158.14 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.