Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/59574
Title: Adaptation of adversarial machine learning for training agents to counter data attacks
Authors: Khajynava, N.
Mutero, Z.
Adam, A.
Keywords: материалы конференций;защита информации;AML;adversarial example generation;robust model training;data poisoning attacks;evasion resistance;Al security;reinforcement learning defense;adversarial robustness;machine learning;multi-agent systems
Issue Date: 2025
Publisher: БГУИР
Citation: Khajynava, N. Adaptation of adversarial machine learning for training agents to counter data attacks / N. Khajynava, Z. Mutero, A. Adam // Технические средства защиты информации : материалы ХXIII Международной научно-технической конференции, Минск, 08 апреля 2025 года / Белорусский государственный университет информатики и радиоэлектроники [и др.] ; редкол.: О. В. Бойправ [и др.]. – Минск, 2025. – С. 385–387.
Abstract: Adversarial Machine Learning (AML) has emerged as a critical field of study, focusing on enhancing the robustness of machine learning models against data attacks. This article explores the adaptation of AML techniques to train intelligent agents capable of countering various attack types, including data poisoning and evasion. We discuss the theoretical foundations of AML, prevalent attack vectors, and methodologies for agent training. Our findings demonstrate that integrating adversarial training with reinforcement learning significantly improves model resilience, ensuring the security of machine learning applications. The proposed approach is validated through case studies in cybersecurity, autonomous systems, and finance. Experiments show that AML- trained agents achieve up to 92 % attack detection accuracy, reducing risks in autonomous systems by 40 %.
URI: https://libeldoc.bsuir.by/handle/123456789/59574
Appears in Collections:ТСЗИ 2025

Files in This Item:
File Description SizeFormat 
Khajynava_Adaptation.pdf158.14 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.